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,-_ i Wlth iMetory

R.S. Rivlin

Center for the Application of Mathe',datics

Lehigh University, Bethlehem, Pa.

Abstract

The constitutive equations for materials with

memory developed by Green and Rivlin are discussed,

with particular emphasis on the physical assumptions

regarding material behavior which are implied by the

mathematical assumptions in the theory.
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1. Introduction

i The c~a'crist- propty of viscoslt_. .sol, which

distirigu:shes them from pe;.fectly 'lastic eLids is the fact

that, ii they are subjocte. to a dtora2tion vhiLh varic. with

time, the stress m. .,ur,, at t.me t , sy. depends not cnly

on the instantaneous value of ths dero,-ti-)n gradvt3, but

also on the whole previous his.oiy cf the deformati.on g'--d-

ients. In a series of papers Green and Riv'-.n (195i, 19600

and Green, Spencer and Rivlin (1959) have developed -:nstitu-

tive equatednis for sumiateriUs, in which the stress is ex-

pressed in terms of the deformation in the form of series of

multiple integrals. It is the object of this paper to recapitu-

late this development, with part.cular emphasis on tzi physical

assumptions regardink the . -i., '.ich are implied by the

ma:' matical assump .ions made ii. thc theory. Such a develop-

S".,, is perhaps timely in view of the extensive attempts in

recent years to represent the behavior of actual materials in

the form given by the theory.

In §2, we start with tae assumption that the Cauchy

stress is a functional of the deformation gradients for times

up to and including t and express the restrictions imposed

on the form of this dependence by the consideration that, if

the body and the force system applied to it, including

inertial forces, are simultaneously subjected to a time-

dependent rigid rotation, the stress field at time t is

correspondingly rotated by the amount of this rotation at



- 3 -

tie t "The fur'. ional dependence on the history of the

,iortjc.1 g:a;..i'. s rp to and including time t is thus

rappar.ee it,. ai,.' 3sired approximation, by functional

depende-ace ov the , .uced Cauchy strain (i.e., the Cauchy

strair t.ess :he i tensor). The nature of this dependence

can be further restt cted if the material has some syimetry,

but the epxlicit 4.. rmination of the form of this restric-

tion w.l not b c T issed here. Rather we shall be concerned

with the assumptions :egarding the functional dependence of the

strss on the redua(,it Cauchy strain which enable us to obtain

explicit represent- : ons.

31:,. Piuch of the apparent complexity of the theory, as

originally presented, stems from the tensor character of the

equations involved, we first discuss the simple case in which

only simple extension of a rod of the material under tensile

force is considered. The stress is then considered to be a

f nctional of the history of the fractional extension of the

rod up to and including time t . The assumption is made

that, for two extension histories, for which the extensions

at each instant of time are infinitesimally different, the

corresponding stresses at time t are infinitesimally differ-

ent. This assumption that the dependence of the stress on

the extension history is continuous, enables us to obtain,

with any desired approximation, representations for the stress

at time t as the .3um of a series of mul.iple integrals in

the extension history. It is shown that the kernels in these
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multiple integrals must necessarily be such as to yield the

property that the memory of the stress for extension history

is a fading memory - the stress forgets the extension history

in the distant enough past. This results from the continuity

assumption and from the assumption that, whatever the exten-

sion history, the stress does not become infinite at infinite

tetime.

It is pointed out that the basic assumption that the

stress at time t is a functional of the extension history

up te, and including time t is strictly not broad enough to

accommodate the behavior of materials which have internal

friction, if deformations involving ins tantaneo 's changes of

the velocity gradient are allowed. In such cases the stress

in the rod at time t must be assumed to depend not only (,n

the history of the extension up to and including t , but

also on the instantaneous values of the rate of extension at

time t

Firally in §4, the various types of behavior considered

in §3, in the case of time-dependent simple extension of a rod,

are generalized to the case of arbitrary deformations of the

material.



2. Basic theory

In this section, the principles underlying the continuum

mechanical theory of non-linear viscoelastic solids will be

briefly summarized. We start by delimiting in mathematical

terms the class of materials to which the theory is to apply.

This class is not the most general with which we shall bti con-

cerned in this paper. However, it will serve to illustrate t.Ae

fundamental principles involved.

The deformation is described by specifying the vector

position x(T) of a generic particle of the body at time T

with respect to 4 fixed origin, as a functicn of its vector

position X with respect to the s&ano origin at some reference

time T , say, which is conveniently taken to be a time at

which the body is undeformed. Thus,

X(T) = XCX,T) .(2.1)

The displacement vector u(t), defined by

L U(T) =X(T) - X ,(2.2)

may also be regarded as a function of X and T ,thus

u(T) = U(X,). (2.3)

In terms of the components x (T), XA and Up(T)

p p
o± x(T), X and U(T) respectively, in a rectangular

cartesian coordinate system x , the relation (2.1) may be

written

xp (.T) X p (XAT) (2.4)
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and the relation (2.3) may be written

UpCr) f uD(XA,t) . (2.5)

It is evident that if the nine deformation grad-

ients axp(T)/aXA are specified at a point, then the amount

by which any linear element at that point is stretched is

determined. For brevity, we use the so-called comma notation,

in which ,A denotes the operator 3/aXA . The nine defor-

mation gradients 3x (T)/aXA are then written xp,A (T)

We shall be concerned with materials in which the stress

a ij (t) at a generic particle, measured at time t, which, for

brevity, will b- denoted oij , may depend on thL history of

the deformation tradient x p,A(T) at that particle for all

times from T = - to t . Thus, unlike the situation

which exists in an elastic material, in which the stres6 at

time t is determined 'iniquely by the deformation gradients

at time t , in a viscoelastic material the stress at time t

"remembers" the defor-mation gradients at all previous times

and the material is said to possess "memory". We can express

this physical idea in a mathematical statemenL - the

constitutive assumption for the material - that the stress

ai at time t is a tensor-valued functional of the deforma-

tion gradient history xp,A(T) for T = - to t, thus

t

a = FijLxpA(T)] . (2.6)

T= -00
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This means simply that if the dependence of xp,A(T) on T

is known for a generic particle, then the stress at that

particle, at time t, is determined.

We recall that, in classical elasticity theory, if we

make the constitutive assumption that the stress at time t

depends on the values of the nine displacement gradients

aui/ax j at time t, it is shown that it must in fact do so

through the six infinitesimal strain comporents eij

defined by'1 1 l u .u 27"ij T axi (2.7)

The question arises - are there any corresponding restric-

tions which, in the case of the constitutive assumption

(2.6) for a non-linear viscoelastic material, can be placed

on the manner in which aij depends on the deformation grad-

ient history? That such restrictions do, in fact, exist

* follows from a consideration somewhat similar to %.at used in

classical elasticity theory. We consider that the body, to-

gether with the force system associated with itincluding iner-

tial forces, is subjected to a time-dependent rigid rotation. The

stress field at time t, referred to the system x, differs from

that which obtains i the absence of the superposed rotation,only

to the extent that it undergoes a rotation, the amount of which

is that of the superposed rotation at time t. From this

consideration, it follows, by a purely mathematical argument,

that the dependence of aij on the deformation gradient

history must be of the following form
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t

ij -iP jQ FPQ [EAB(T)] (2.8)
T-- -0o

where EAB(T) is defined by

EAB(T) = Xk,A(T')Xk,B (T) -6AB (2.9)

and the abbreviation x is used for the deformation

gradients Xi,p(t) at time t. The nine quantities EAB(T)

are called the components of the reduced Cauchy strain ten-

sor at time T and we note that EAB(T) = EBA(T). Accord-

ingly, only six of the quantities EAB(T) are independent.

Thus, in passing from (2.6) to (2.8), we have replaced arbit-

rary dependence of aij on the nine functions xp,A(T) by

arbitrary dependence on the six independent components of the

reduced Cauchy strain.

So far we have made no assumption regarding the symmetry

of the material. We recall that in classical elasticity, if

the mate idl possesses some symmetry, restrictions can be

placed on the manner in which the stress depends on the

infinitesimal strain components. In the case when the material

is isotropic these restrictions become particularly strong.

In principle, we can, by similar considerations, place

restrictions on the form of the tensor-valued functional

FPQ in (2.8) if the non-linear viscoelastic material has some

symmetry. It emerges that the functional FPQ must satisfy

the condition

t t
FpQ[E' B(r)] = apMaQN FMN[EAB(t)] , (2.10)

T= -o0 T= -00



I9-

where

EAB(T) = aAMaBNE, 04 (T) , (2.11)

for all aM belonging to the group of transformations

describing the symmetry of the material. In the case when

the material is igotropic, this group is the rotation group,

so that, for an isotropic viscoelastic material, the tensor-

valued functional FAB must satisfy the condition (2.10)

for all rotations aA . This implicit restriction on the

form of FAB can be made explicit for any specified material

symmetry by a method developed by Green and Rivlin (1957) and

Wineman and Pipkin (1964). However, we shall not pursue this

here.

If the material considered is incompressible, specifica-

tion of the deformation gradient history does not determine

the stress completely, since the superposition on any force

system of a hyd-zstatic pressure does not alter the deforma-

tion. Accordingly, the constitutive assumption (2.6) must be

replaced by

t
= Fij[xp,A(T)] - Pdij (2.12)

where p is undetermined if the deformation gradient

history is specified. From this constitutive assumption

the constitutive equation

t

oij = XiPXjQ FPQ[EAB(T)] - P 6 ij (2.13)

follows, replacing (2.8,. At the same time, the fact that,
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in an incompressible material, the volume of a material

element must remain unchanged during deformation, imposes on

the reduced Cauchy strain the restriction

det E B(T) + SABI = 1 . (2.14)

There is one further restriction which can be placed on

the constitutive equation '2.8) or (2.13) from considerations

of a verIy general character. This involves the concept of a

hereditary material as one which remains unchanged in proper-

ties so long as it rests undeformed. For such a material a

shift in time, by an amount t o , ;y, of the deformation

history, will shift the depend-Ince of stress vs. time curve

by an equal amount t o parallel to the time axis.

In the remainder of this paper, we shall restrict our-

selves to hereditary materials.
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3. Non-linear constitutive equations

In §2 we have obtained certain restrictions which must

be imposed on the manner in which the Cauchy stress depends

on the deformation gradient hitrtory. These are expressed

by equation (2.8) in which, if the material possesses some

symmetry, the tensor-valued functional FPQ must satisfy the

equation (2.10).

In order to obtain more explicit forms for the constitu-

tive equation, which reflect physically non-pathological

behavior on the part of the material described, various rep-

resentations of the functional FP, in teras of series of

multiple integrals have been developed. Green and Rivlin

(1957, 1960) and Green, Rivlin and Spencer (1959) considered

materials in which infinitesimal changes in the deformation

history result in infinitesimal changes in the stress at

time t. They showed that a sequence of approximations to

FPQ in the form of series of multiple integrals can be con-

structed which tend, in the limit, to FPQ. In order to

highlight the physical content of this development, free from

the mathematical complications which arise from the tensorial

character of the constitutive equations, we will discuss it

in the context of time-dependent simple extension of a rod.

Accordingly, let a be the stress at time t which res-

ults from a time-dependent fractional extension e( ). Then,

since a is determined if e(T) is specified for -- <T<t

we may say that a is a functional of e(7), thus:
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t
F = [e(Tl) . (3.1)

T= -W

It is convenient for the purposes of our discussion to re-

place the time T by a time-like variable s defined by

S = 1 (3.2)
(t-T+l) p

where p is positive. Then, for a specified t, the

axtension may be regarded as a function of s rather than

of T .Noting that when T=- , s = 0 and when T = t,

s = I , we may re-write (3.1), for a specified t, in the

form

1
a = F [e(s);t] , (3.3)

s=O

a being a functional of e(s) and an ordinary function of

t. For hereditary materials, we may omit the dependence of

a on t and we then have

1
a = F [eCs)] . (3.4)

s=O

Now, suppose that e(s) can be represented by a Fourier

series (see §5) thus

e(s) = E AnCOS n Hs , (3.5)
n=O
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where

An = 2Je(s) cos ns ds

0 (3.6)

A0 = e(s)ds
0

The condition, wider which the representation (3.5) for

e(s) is valid, is that e(s) have bounded variation in

the range s = 0, 1 . If this condition is satisfied, then

the sum of the series (3.5) gives the value of e(s) at all

points of the interval s = 0, 1 except possibly at points

of discontinuity. Accordingly, if we assume that e(s) is

a continuous function of s, then, if the coefficients

A0 , Al,... ii, the Fourier series (3.5) are specified, the

value of e(s) is determined at all points of the interval

s = 0, 1 and a may be regarded as a function of A0,A1,...,

rather than as a function of e(s).

We now suppose that in (3.4), a is a continuous

functional of e(s) ; i.e., an infinitesimal change

More precisely, if el(s) and e2 (s) are two extension

histories, and al and a2  are the corresponding values

of stress at time t, then for c > 0 , there exists a

value of 6 > 0 , such that

1a1-a21 < 

provided that

max le 1 (s) - e 2 (s)I < 6
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in e(s) results in an infinitesimal change in a . Then,

a may be regarded as a continuous function of A,, A 1 ,....

To some degree of approximation, we may regard o as a

continuous function of the first N + 1 Fourier ciefficients

A0 , A1 ,..., AN . This approximation may be made as close as

we please by taking N sufficiently large. We denote by oN

such an approximation to a . Now, from Weierstrass's

theorem, it follows that we can approximate aN as closely

as we please by a polynomial in A0 , A1 ,..., AN . According-

ly, we can approximate a with any desired accuracy by a

polynomial in A0 , A1 ,..., AN . We note from (3.6) that the

product of r , say, A's is an T-tuple integral and that the

kernel in this integral is a continuous function of its argu-

ments. For example ,

A1A2 = 4 f cosHlS1 cos 2Hs2 e(s 1 )e(s 2 )ds1ds 2 . (3.7)

0 0

Accordingly, a may be approximated to any desired accuracy

by the sum of a number of multiple integrals, thus

. f (5ff sI 2 -. ..'sv)e (s1)es 2 ...e(s )
0J 0

dsds2 . .. ds = (say), (3.8)

where v = 0, 1, 2,... , and the kernels in the multiple

integrals are continuous functions of s ,..., s P *
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The term in (3.8), which corresponds to P = 0 , is a

constant. This may be taken to be zero, if we assume that

the stress is zero for zero strain history (i.e.,o =0 when

e(s)=0). The result (3.8) is that obtained from the theory

of Green and Rivlin (1957), by specializing it to the case

of simple extension of a rod.

Using (3.2), we can rewrite the expressions (3.6) for

A. as

t P-nH

An  2 P eCT) cos P dTf (t-T+l) 0  (t-T+l) 0

(3.9)

A0 = fP+ e(r)dT(tT~l)P+l

Correspondingly, the approximate expression for a in

(3.8) may be rewritten as

a = f1(T 1 T2 9...,T)

1(3.10)

e( 1 l)e( (2).. ( v e d 1'V dT d2... dT ,

where

_ P f U(s 1 S2',...,s 1)
f TIT2"" 'T) [ (tT I+I)(tT 2 +1)... (tT +i)1]~

(3.11)

Since fV (SlS 2 ...,s ) is a bounded function of

S ,S2 ... ,sv , and hence of T 1 ,T 2 ,...,T , it follows
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that f (Ti',T P... VT) becomes vanishingly small as any of

the variables Ti. T 2 "V'PT tends to - . This implies

that the material has fading memory in the usual sense that,

as t - T ,the effect on a of the extension, in a

finite time interval about time T , becomnes vanishingly small.

From a purely mathematical point of view, if e(s)

possesses one or more discontinuities in the interval s = 0,1,

then in order to determine e(s) at all points of this inter-

val, we must specify, not only the values of tbi Fourier co-

efficients given by (3.6), but also the values of e(s) at

the various values of s at which the discontinuities occur.

Let us suppose that discontinuities occur at s = SX(X=l, 2 ,...,v)

and let e = e(S.) . Then, if a is a continuous functional

of e(s) , we may regard it as a continuous function of

A0 , A1,... and of eX(X=l,2,...,v) , the nature of this

function depending on the values S of s at which the dis-

continuities occur. Approximate expressions a for a may

then b, obtained in the form (3.81 , where f is also a

function of e and S. , as well as of s Is2,..Is .

The term corresponding to V = 0 is now a function of

e and S, .

In considering the applicability of this conclusion to

real materials, it is well to bear in mind that discontinuous

changes in the extension cannot in fact be produced. The

importance of considering a discontinuous change in e(s) at

time s = S1 , say, resides only in the fact that it provides
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an idealized model for a very rapid, but continuous, change

in the value of e(s) in the interval S1 - C , Si+ C I

where c is small. Consequently, we may, in general, omit

consideration of discontinuities in e(s). !.n exzeption

arises when this discontinuity occurs at the instant at which

the stress is measured, i.e., at s = I . In order to accommo-

date perfectly elastic materials and materials exhibiting

instantaneous elasticity within the framework of the theory,

we must then include, in the expression for a , explicit

dependence on the instantaneous value e of e(s) at s = 1.

Approximate expressions o for a may then be obtained in

the form (3.8), where f is a function of e , as well as of

Sl, s2 ,...,s. . The term corresponding to p = 0 is now a

function of e . This result is essentially that obtained from

the theory of Green, Rivlin and Spencer (1959), by specializ-

ing it to the case of simple extension of a rod.

It is perhaps worth-while to underline the fact that,

whether or not the f's depend on e , the approximation to

a represented by (3.8) is of the following type. If c is

any specified positive quantity, we can construct an approxi-

mation a , say, to a of the form (3.8), such that

c- < C (3.12)

for all extension histories e(s) which have bounded

variation.
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The kernels occuring in the expression for cannot

be uniquely determined. We can, however, construct a sequence

of approximations of the form (3.8), corresponding to smaller

and smaller c , which tends in the limit tc o . Corres-

ponding kernels in this sequence do not necessarily tend to a

limit so that we cannot say that a may, without error, be

represented by an expression of a form similar to that in

(3.8). The absolute error involved in approximating a by

a may, however, be made as small' as we please. In the neigh-

borhood of a = 0 , the percehstage error may then be large.

It is, however, perfectly safe 'o use a representation

for a of the form (3.8),provided that we are concerned only

with changes of a of magnitude much greater than c . Since

c may be made as small as we please, it might, at first sight,

appear that this does not impose a me;ningful restriction on

the use of the representation (3.8). Let us therefore consid-

er an example in which this might, in fact, impose a meaning-

ful restriction. Suppose we consider extension histories

ae(s) , with e zero, where a may be made as small as we

please. For small enough a , and taking fO= 0 , we may

approxi'ate a by the fi-st term in the series (3.8) thus

ctf fl(sl)e(Sl)dS1  (3.13)

This approximation becomes increasingly good as as a

decreases. However, regarded as an approximation to a ,

the expression on the right-hand side of (3.13) has th?'
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limitation that a only approximates i with absolute error

less than c . It may be that, in order for (3.13) to pro-

vide a good approximation to a , the value of a must be so

decreased that the stress is comparable with c . The fact

that c may be made as small as we please does not save us

from this limitation, since choice of a lower value of c

requires a new approximate representation of the form (3.8)

and with this we may be driven to lower values of a and

hence of the stress.

If, however, a may be expressed exactly in the form

(3.8), then, for sufficiently small values of a , we may

approximate a by the expression (3.13) and, for somewhat

larger values, by

a = f 1 (s)e(sl)ds1 + 2 f 2 (sl,s 2 )

00 0

e ( 1 )Ws 2 ) ds 1 ds 2 , (3.14)

and so on. In this way, we obtain a hierarchy of expressions

for a , valid over larger and larger ranges of the extension

prior to time t . This is, of course, also true if a can

be approximated by an expression of the form (3.8), with an

error which is of degree greater than p , say, in the exten-

sion. Of course, whether or not one of the approximations

has significant value in the study of a particular material,

to which it applies in principle, will depend on whether the

range of extensions for which it is valid is a range over

which experiments can be carried out with reasonable accuracy.
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Colema and Noll (1960) have obtained n successive

approximations essentially of the form (3.13) and (3.14)

by assuming that the functional F in (3.3) is Fr6chet

differentiable n times about the zero history (i.e., the

history e(s) = 0 , O<s~l). Their argument is basically

circular in that the definition of nth order Frichet

differentiability is that the functional F shall be ex-

pressible as the sun of homogeneous functionals of degrees

1, 2,...,n in e(s) , with a residue of degree greater

than n in e(s)

The discussion has, so far, been based on the assumption

that the stress at time t is a continuous functional of the

extension history e(T) for - < T <t . It is evident that

this is not necessarily an appropriate assumption for many of

the materials with which ve are concerned. For example, let

us consider two deformations in both of which the extension

is maintained at zero up to and including time t . In one

of these, we maintain the extension zero after time t , while

in the other the rate of extension is changed discontinuously

at time t from zero to a finite value. In many materials

(e.g., in Newtonian fluids) the stress at time t will be

quite different in the two cases.

In order to accommodate such materials in the framework

of our mathematics, we may take our constitutive assumption

in the following form : the stress is a functional of e(T)

up to and including time t and an ordinary function of

(the rate of extension at time t ) , thus

a = F e(T) ; . (3.15)
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Generalizing this concept to accommodate materials for which

discontinuous changes at time t in the higher time deriva-

tives e , 7,... of the extension affect the stress at time

t , we may wake our initial constitutive assumption in the

form : the stress at time t is a functional of e(T) in

the interval - ® < T < t and an ordinary function of

e, e,..., thus

t
C -F ; . (3.16)

This is esentially the constitutive assumption used by

Green and Rivlin (1960), specialized to the case of simple

extension of a rod.

Alternatively, we could accommodate such constitutive

assumptions in the single assumption that the stress a at

time t is given by

t t+E
a = Lt F [e(T)] , (3.17)

C-* T

for small positive c , i.e., stress at time t is the

limit as e + 0 of a functional of e(T) over the range

< T < t + C . To see this we note that

e= Lt 6'(-t)e()dT ,

-C (3.18)

-= Ltft ,,(T-t)e(T)dT , etc.,

-oo0

where 6( ) denotes the Dirac delta function and 6'( )

denotes its derivative. It should be noted that even if,
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in (3.15) and f3.16), a is a continuous functional of

e(-t) and a continuous function of the instantaneous values

of the time derivatives of e at time t , the functional

dependence on e(T) expressed by (3.17) is not, in general,

continuous.

Of course, if we limit ourselves to deformations in

which the time derivatives of e(r) are continuous at t ,

then the constitutive assumptions (3.15) and (3.16) can be

replaced by (3.1).

Approximations to a in the form of series of multiple

integrals may be made in the cases when a is given by

(3.15) or (3.16). The approximation takes the form (3.10),

with the kernels dependent on e in the case (3.15) and on

, e,... in the case (3.16).

It should be appreciated, in interpreting the above

remarks, that if the "slope" of e(T) vs. T changes dis-

continuously at time t , then scrictly its time derivative

at time t does not exist. BI e we mean the right-hand

derivative of e(T) at time t . This is in accord with

the usual convention in mechanics when we apply the Navier-

Stokes equation, say, to situations in which the rate of

deformation changes discontinuously at time t
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4. meralization to arbitrary deformations

In the previous section, we have attempted to show

bow mathematical expression may be given to a variety of

possible types of mechanical behavior which may be exhibited

by viscoelastic materials. We have done this in the rela-

tively simple context of simple extension.

For each type of behavior we may obtain analogous

equations which are valid for deformations of a general

character. Thus, if we take our initial constitutive assump-

tion in the form (2.6), we have seen that the Cauchy stress

must necessarily be expressible in the form (2.8). Replacing

the time T by the time-like variable s , defined by

(3.2), we see that the stress aij , referred to a rectangu-

lar Cartesian system x , must be expressible in the form

1
a.. = xipXjQ FpQ [EpQ(s)] (4.1)

s=O

where EpQ(S) is the reduced Cauchy stress at time s

This can be re-written more succinctly in matrix notation,

thus.

a = F 1 [E(s)]FT (4.2)

~ s=O

where

S= Iija ll , = IIFiAII = IIxi,Ail E(s) = I1E (s)II

(4.3)
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*and F T denotes the transpose of F

We now suppose that E~s) can be represented by a

Fourier series thus

iw

E(s) A n:A cos nns (4.4)
n=0

where ~nis given by

!2

Af2( E(s) cos nls ds (n1))

(4.5)

A 0  = E(s)ds

0

i.e., each of the coinpoaients of the tensor E(s) can be

expressed as a Fourier series. This is possible under the

same conditions as apply in our discussion of the case of

simple extension. Each of the componsets of E(s) must

have bounded variation in the interval [0,1]. Paralleling

the discussion in 3, we assume that each of the compon-

ents of E~s) is continuous everywhere, except possibly at

s = 1 . Then, in order to represent E(s) over the

complete range s = [0,1] , we must specify not only the

coefficients A n in (4.4), but also the value E of E(s)

n--

at s = 1.

The tensor F in (4.2) is, of course, a tensor-valued

functional and we suppose that it is such that infinitesimal
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dhanges in the components of E(s) lead only to infinitesi-

mal changes in the components of F . The tensor-valued

functional F is then said to be a continuous functional of

the tensor E(s) . Analogously with the case of simple exten-

sion, we may approximate each of the components of F to any

desired accuracy by a polynomial in the components of the

tensors E and A . Thus, each of the compunents FpQ of

F may be expressed, with any desired accuracy, in the form

(n )  (n2) (nl(n

PQ 'PQAB . ...A B AAB 2B . AA B
pp 1 22.. pp

(4.6)

TpQ (say)

where, for specified n, A are the components ofAB

A ; also n1 , n2 ,... take integral values and the a's

are functions (or, if we like, polynomial functions) of the

components of E .

Using (4.5), we may rewrite (4.6) in the form

PQ PQAB. ,... sP

EAB I(Sl)'''EA B (s)ds 1 -'ds) 1 (4.7)

where the kernels .fPQA1B .A B are continuous functions

of sl,...,s0 and functions (or polynomial functions) of

the components EAB of E .
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Using (3.2), we can, of course, re-write (4.7) as

.1 (- v ... T *lA] .pQj .Pt. I AUB ( I

E A1Bl(....EA B (T)dT1...dTI , (4.8)

where
P fPQAI B" "A B 49

B (4.9)£PQA:LB3.. ..A PB V [(t-T 1+1 ) ... (t-T U+l) ]p+l

If the material considered has some symmetry, the

functional F must satisfy the condition (2.10). In

approximating F by T , to any desired accuracy, this

can be done by an expression of the form (4.7) which satis-

fies the restriction (2.10) imposed by material symmetry.

We can develop constitutive equations for arbitrary

deformations corresponding to the simple extensional case

presented in (3.16). We start with the constitutive assump-

tion that the Cauchy stress components at time t are

functionals of the histories of the deformation gradients

xPA(T) for - < T < t and functions of the velocity

gradients xpA ' acceleration gradients Rp, , and so on,-

at time t . Thus,

a = i [Fii ()A(T ' p,A ; xp,,A ', .(4.10)
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Paralleling the passage from (2.6) to (2.6), we reach the

conclusion, in th.is case, that the stress must be express-

ible in the form

dE AB d2AB (.1
oij 2 Xi,pxj,QFpQ[EAB(); -t , dt 2 ,

Using the notation (4.3), we can, of cours-, rewrite

(4.10) as

dE d2E
=FF[E(s) ; - .]FT (4.12)

dt dt 2

If the dependence of FpQ on EAB(T) is continuous,

then we can approximate FpQ with any desired accuracy by

a series of multiple integrals in the form (4.8), the ker-

nels now being functions of the components of the reduced

Cauchy strain and its time derivatives at time t . If the

dependence of FPQ on E , dEAB/dt , d EAB/dt ,.. is

continuous, then the dependence of the kernels on these may

be taken as polynomial, with any desired accuracy.

Just as in the previous cases discussed, if the mater-

ial considered has some symmetry, the tensor-valued

functional in (4.10) must satisfy the restrictions implied

by (2.10).
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S. Appendix

In order to arrive at the Fourier representation

(3.5) for e(s) , we proceed in the following nanner.

We first form a function F(s) given by

i(s) = e(s) s = [0,1,

(5.1)

e(s) = e(-s) s = [-l,0.

i(s) is thus an even function of s , defined in the

range [-1,11 by (5.1).

We now define e(s) , not just for s = [-llJ ,

but for all values of s , as a periodic function with

periodicity 2, which is given by (5.1) in the range

[-1.11 . We express this as a cosine Fourier series thus,

F(s) = A cos nfls , (5.2)
n0

where, using the first of equations (5.1)

An = e(s) cos nils ds = 2 e(s) cos nlis ds (n>1)

(5.3)

A0 = 2 (s)ds = e(s)ds

In view of the first of equations (5.1), we obtain (3.5)
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